A recruiter contacted me recently via email and encouraged me to apply for several entry-level roles in communications. Why communications, when my background clearly reflects a long career in HR? And why were those positions located in Georgia, when I live in New York City? I had no idea.
Curious, I replied to the email explaining that I was not looking for employment, and subsequently learned that the email had been sent by an algorithm that determined I was an entry-level millennial living in Savannah. This inaccurate profiling was formed by scans of my recent Twitter and Facebook posts, which described my new (pro-bono) role handling communications for a first-time senate candidate in Georgia.
Artificial intelligence (AI) has taken employers' ability to identify potential hires to a more robust level than traditional applicant tracking software (ATS) that simply parses candidates' resumes for keywords. One compelling feature of AI recruitment tools is that they help companies reach out to passive candidates whom employers would otherwise miss. Many of them do so by using chatbots that proactively introduce themselves over text, email or social media to candidates that visit an organization's career page, but don't necessarily apply to a job.
But despite their potential, there are pitfalls that come with using AI for recruiting—my recent experience being one. Here are some other AI recruiting pitfalls and solutions to avoid them:
AI Can Be Biased, Just Like a Human
Pitfall: Developers of AI recruitment tools tout the technology's automated objectivity as a way to reduce human bias against older workers, minorities or religious groups. Developers even claim to improve diversity by teaching AI to seek candidates from under-represented demographics. But since AI learns by perceiving patterns in past behaviors, there may be hidden biases in your company's hiring that an AI solution will inevitably pick up.
The Society for Human Resource Management (SHRM) cautions that "if a company's highest performers historically have been identified as white males between 30 and 40 years old—because those individuals were frequently promoted into next-level jobs—that bias can inadvertently become built into algorithms that learn from talent management patterns."
Solution: Work with a vendor who is willing to customize a recruitment tool to avoid unconscious biases, and who will program the tool to actively diversify your candidate pool (regardless of past patterns).
AI Can Miss the Nuances of Social Media
Pitfall: There's potential for AI to misunderstand insights garnered from social media. Consider the individual who posts or re-tweets something reprehensible in order to expose how objectionable he or she finds it; what AI learns from this could affect that person's reputation.
Solution: Talk to your employment attorney. In some states, privacy laws prohibit using information found on social media from hiring decisions. Find out how to separate certain data pools such as social media, and potentially even omit them from your AI tool's hiring considerations.
AI Can Put You on the Wrong Side of the Law
Pitfall: Recruitment tools use closely-guarded proprietary algorithms that aren't subject to regulatory oversight, leaving HR in the dark about how the technology truly works. This can make companies susceptible to unexpected lawsuits or can hurt their reputation.
To complicate matters, multinational companies must comply with the EU's General Data Protection Regulation (GDPR) as of May 25, 2018. This regulation stipulates how individuals' personal data is collected, and includes information gathered from digital footprints and factors that reference, among other things, one's cultural or social identity. Compliance with GDPR may affect how even U.S.-based companies recruit.
Solution: New York City has instituted a task force to monitor the use of AI systems.Stay abreast of similar developments in cities where your company has a presence.
There's a great deal of promise behind AI from a recruiting standpoint, but there's a great deal of risk as well. Before AI recruitment becomes as ubiquitous as ATS software, HR leaders will need to consider all of the challenges that come with implementing the technology—and get ahead of them.
Photo: Unsplash
Ressourcen zu diesem Thema
Sie möchten noch mehr erfahren? Entdecken Sie unsere Produkte, Kundenberichte und aktuelle Brancheneinblicke.
Blogbeitrag
Erwartungen der Generation Z und der jüngeren Millennials an die Arbeitswelt
Job und Karriere haben bei den ab 1995 Geborenen nicht mehr die allerhöchste Priorität. Die Arbeit soll sinnstiftend sein sowie persönliche Erfüllung bieten. Die Ansprüche dieser Generation treffen durch den aktuellen demografischen Wandel und den dadurch wachsenden Fachkräftemangel auf eine große Nachfrage nach Arbeitskräften. In einigen Jahren werden Gen Z und Millennials die Mehrheit am Arbeitsmarkt stellen. Dies stellt für sie eine ideale Verhandlungsposition dar, und eben dieser sind sie sich auch bewusst. Unternehmen versuchen mit allen Mitteln, junge Talente für sich zu gewinnen. Doch was sind die Ansprüche der Bewerber und wie stellen sie sich ihre Positionen in den Organisationen vor?
Blogbeitrag
Lernplattformen und ihre Bedeutung für das Talent-Management
Im Mai 2022 übernahm wir bei Cornerstone EdCast, die branchenführende Learning Experience Platform (LXP), undkündigten im September mehrere Weiterentwicklungen an. (Mehr zu unserer Zusammenarbeit mit EdCast finden Sie hier.
Blogbeitrag
Die Führungskraft als Coach
Eine traditionelle Führungskraft kennt die Antworten auf dringende Fragen und Lösungen für akute Probleme. Deshalb ist sie Führungskraft. Sie ist es gewohnt, täglich auf Fragen, wie „Was sollen wir tun?“ oder „Ist das so in Ordnung?“ reagieren zu müssen. In vielen Teams und Organisationen ist das so, und die Geführten erwarten von ihren Führungskräften eine entsprechende Reaktion.